TRANSFORMATIONS OF THE FUNDAMENTAL GROUPS CORRESPONDING TO THOSE OF HEEGAARD DIAGRAMS BY THE BAND MOVES

By Shunzi HORIGUCHI

1. Introduction

H. Zieschang obtains an important result concerning the band move for a handlebody (§3 Theorem 4). We will give transformations by the band move for basic Heegaard diagrams (§3 Theorem 5). From the Theorems 4 and 5, we get more developed transformations for Heegaard diagrams (§3 Theorem 6). F. Waldhausen obtains an important result concerning the equivalent of Heegaard splittings for the 3-sphere S^3 (§3 Theorem 7). Moreover, from the Theorems 6 and 7, we get a distinguishing feature of transformations of Heegaard diagrams for S^3 (§3 Theorem 8).

§4 deals with the main theme that the transformation by a band move of the Heegaard diagram and that of the fundamental group by an algebra calculation (replacements or substitution) correspond to 1 to 1 (Theorem 9). Moreover, a reduction of the fundamental groups for S^3 is obtained (Theorem 10).

Everything in this paper, we will be considering the piecewise linear point of view. ∂X, $Int(X)$, $Cl(X)$ indicates the boundary, interior, closure of a point set X, respectively. Hereafter, notation M^3 denotes a closed, connected orientable 3-manifold unless otherwise stated.

2. Preliminaries

In this section we give definitions, basic Theorems 1 and 2, and so forth.

We begin with a definition of a handlebody.

Definition 1. Let $\{D_1, \cdots, D_n\}$ be mutually disjointed 2-disks and $h_i = D_i \times [0, 1]$ ($i = 1, \cdots, n$). A handlebody H of genus n is a 3-ball (cube) B^3 with n handles $\{h_i\}$ so that the result of attaching h_i with homeomorphisms throws $2n$ disks $D_i \times 0$, $D_i \times 1$ onto $2n$ disjointed 2-disks on ∂B^3. H is represented as $B^3 + \bigcup h_i$ where $B^3 \cap h_i = \partial B^3 \cap \partial h_i = \{D_i \times 0, D_i \times 1\}$. A handlebody H of genus n is also called as a solid torus of genus n.

We note that ∂H is an orientable or nonorientable closed surface of Euler characteristic.
2−2n according as \(H \) is orientable or nonorientable.

Definition 2. Let \(H \) be a genus \(n \) handlebody and \(\{D_i\} (i = 1, \cdots, n) \), mutually disjointed properly embedded 2-disks in \(H \). If the \(Cl(H - \{D_1 \cup \cdots \cup D_n\}) \) becomes 3-ball, then the collection \(\{D_i\} (i = 1, \cdots, n) \) is called a complete system of meridian disks of \(H \) and \(\{\partial D_i\} \) a complete system of meridian circles of \(\partial H \).

Note that \(\{D_1, \cdots, D_n\} \) cuts \(\partial H \) into 2-sphere with \(2n \) holes.

Definition 3. Let \(H \) be an orientable genus \(n(\geq 2) \) handlebody with the same presentation as in Def. 1.

1. Fig. 2–1 shows two handles \(h_i \) and \(h_j \) of \(H \). By an ambient isotopy of \(H \), keeping \(D_i \times 0 \) fixed, and sliding \(D_i \times 1 \) along the direction of the line in \(\partial(B^3 + h_i) \), \(h_i \) goes over the \(h_j \) and turns back to the first place. This operation is called a handle sliding of \(h_i \) about \(h_j \).

2. Let \(\{D_i\} (i = 1, \cdots, n) \) be a complete system of meridian disks of \(H \) and \(\{m_i\} (m_i = \partial D_i) \) a complete system of meridian circles of \(\partial H \). Let \(\alpha \) be an arc on \(\partial H \) that joins two chosen meridians \(m_i \), \(m_j \) and \(Int(\alpha) \cap \{m_i \cup m_j\} = \phi \). See Fig. 2–2. Let \(N(m_i \cup \alpha \cup m_j, \partial H) \) be a regular neighborhood of \(m_i \cup \alpha \cup m_j \) on \(\partial H \). \(\partial N \) consist of three circles. Out of the three circles, two are isotopic to \(m_i \), \(m_j \) and then the remainder is not isotopic to them. Let the notation of remainder be \(m_{ij} \). \(m_{ij} \) is called a band sum of \(m_i \) and \(m_j \) (with respect to the band \(\alpha \)). It has also the very pleasant property that bounds a disk and it is homeomorphic to \(D_i \) and \(D_j \). Changing the label \(m_{ij} \) into \(m_i \) (\(m_j \) resp.) is called a band move of \(m_i \) (\(m_j \) resp.).

3. Let \(\bar{D}_i, \bar{D}_j \) be a disk in the foot of \(\partial h_i, \partial h_j \) shown in Fig. 2–3, respectively. Gluing together \(h_i \) and \(h_j \) by an orientation-reversing homeomorphism \(f: \bar{D}_i \rightarrow \bar{D}_j \), a handlebody with the deformed part, the figure 3-shape turned to \(\pi/4 \) radians is obtained (see §3 U1–C). This operation is called as handles combining with \(h_i \) and \(h_j \).
Definition 4. A closed, connected 3-manifold M^3 is represented with a union of two handlebodies H_1, H_2 in M^3; $M^3 = H_1 \cup H_2$ so that $H_1 \cap H_2 = \partial H_1 \cap \partial H_2 = \partial H_1 = \partial H_2$. ∂H_1 ($= \partial H_2$) is a closed surface of genus $n(\geq 1)$. Let the surface be F. H_1 (H_2 resp.) and F are orientable or nonorientable according as M^3 is orientable or nonorientable. A triplet (H_1, H_2, F) or $M^3 = H_1 \cup H_2$ is called a Heegaard splitting (H-splitting) of M^3 with genus n and H_1 (H_2 resp.), a Heegaard-handlebody (H-handlebody). F is called a Heegaard-surface (H-surface) and the integer $n(\geq 1)$, Heegaard genus (H-genus). Let U and V be disjointed handlebodies with the same genus. Let $f : U \to V$ be a homeomorphism so that $f|_{\partial U} : \partial U \to \partial V$ is an orientation-reversing homeomorphism. Gluing together ∂U of U and ∂V of V by f, we get M^3. Then M^3 is denoted as $(M^3; U, V, f)$ or $M^3 = U \cup V$. It is called a genus n H-splitting of M^3 concerning f.

In $(M^3; U, V, f)$, by replacing $f^{-1}(V)$ with V, one can regard $(M^3; U, V, f)$ as (U, V, F) of M^3.

Theorem 1. Let $M^3 = H_1 \cup H_2$ and $M'^3 = H'_1 \cup H'_2$ be two H-splittings with the same genus. Suppose that there exist homeomorphisms $f : H_1 \to H'_1$ and $g : H_2 \to H'_2$ so that the right side diagram becomes commutative. Then M^3 is homeomorphic to M'^3.

Proof. Suppose that $h : M^3 \to M'^3$ is a homeomorphism so that $h|_{\partial H_i} = f$ and $h|_{\partial H_2} = g$.

Then by the above commutative diagram, h is well-defined. □

Theorem 2. Let $M^3 = H_1 \cup H_2$ be a genus n H-splitting and $\psi : H_1 \to H_1$ a homeomorphism. Let $M'^3 = H_1 \bigcup_{\phi \psi(\partial H_1)} H_2$. Then M'^3 is homeomorphic to M^3.

Proof. Let the elliptical character $id.$ be an identification map of ∂H_2. Then the right side diagram becomes commutative. Hence by the Theorem 1, M'^3 is homeomorphic to M^3. □

By the above Theorem, we can apply the handle sliding and handles combining to H-splitting to examine the changing of M^3.

Definition 5. Let (H_1, H_2, F) and (H'_1, H'_2, F') be H-splittings of M^3 with the same genus. If there exists a homeomorphism $f : M^3 \to M^3$ so that $f(F) = F'$, then (H_1, H_2, F) and (H'_1, H'_2, F') are called equivalent.

Definition 6. Suppose (H_1, H_2, F) is a genus $n(\geq 1)$ H-splitting of M^3. Let (D_1, \ldots, D_n),
Let $\{D_1', \cdots, D_n'\}$ be a complete system of meridian disks of H_1, H_2, respectively and $\{m\} = \{m_1, \cdots, m_n\} = \{\partial D_1, \cdots, \partial D_n\}$, $\{l\} = \{l_1, \cdots, l_n\} = \{\partial D_1', \cdots, \partial D_n'\}$. Then $(H_1 ; m, l) ((H_2 ; l, m) \text{ resp.})$ is called a genus n Heegaard diagram (H-diagram) associated with (H_1, H_2, F). $(m, l)(\{l, m\} \text{ resp.})$ are called meridian-longitude systems of $(H_1 ; m, l) ((H_2 ; l, m) \text { resp.})$.

By an ambient isotopy of H, a genus $n(\geq 1)$ handlebody H is deformed such as shown in Fig. 2-4. This shows a genus n H-diagram $(H_i ; m, l)$ of the 3-sphere. It is called a canonical genus n H-diagram.

Let $(H_1 ; m_1, \cdots, m_n, l, \cdots, l_n)$ be a genus n H-diagram associated with (H_1, H_2, F) of M^3. We may assume that $(m_1 \cup \cdots \cup m_n) \cap (l_1 \cup \cdots \cup l_n)$ consists at most of finite points (by an argument of general position).

Definition 7. The number of finite points of $\{m\} \cap \{l\} = (m_1 \cup \cdots \cup m_n) \cap (l_1 \cup \cdots \cup l_n)$ is called a cross point number with $(H_1 ; m, l)$ or $(H_2 ; l, m)$.

3. Transformations of Heegaard diagrams

We begin with an obvious Proposition.

Proposition 3. Let Fig. 2-5 be a part of H-diagram $(U ; m, l)$. The longitude l_i crosses the meridian m_i, turns back to m_i, and crosses m_i, again. Then, there exist a transformation of $(U ; m, l)$ so that a part of l_i deforms to the dotted line and it does not cross m_i. It does not change the H-genus but decreases the cross point number, as many as 2.

Definition 8. The above transformation is called a cancelling for the H-diagram.

If the diagram like Fig. 2-5 appears, then we always do the above correction.

From now, we state Zieschang's result and give transformations by the band move for basic H-diagrams after that.

Theorem 4. Let H be a genus $n(\geq 2)$ handlebody. Then any two complete systems of meridian circles of ∂H transform each other under a finite sequence of band moves (Zieschang [2]).
Let the following figure U1–A be a part of H-diagram \((U; m, l)\). The longitudes \(\{l_{i1}, \ldots, l_{il}\}\) \((l \geq 0)\) drawn heavily go around side by side on the two handles \(h_i\) and \(h_j\). The longitudes \(\{l_{i1}, \ldots, l_{il}\}, \{l_{i1}, \ldots, l_{il}\}\) go around on \(h_i, h_j\), respectively. It shows the general case that longitudes run on handles \(h_i\) and \(h_j\). In a special case that a character \(l\) on the lower right equals to 0, there are not longitudes that run on \(h_i\) and \(h_j\). V1–A’ is the dual part of U1–A. The longitude \(m_i, m_j\) crosses the meridians \(\{l_{i1}, \ldots, l_{il}, l_{i1}, \ldots, l_{il}\}, \{l_{i1}, \ldots, l_{il}, l_{i1}, \ldots, l_{il}\}\), respectively.
The transformation from $U1-A$ into $U1-B$ is obtained by the handle sliding of h_i about h_j along the directions of the longitudes $\{l_{ij}, \ldots, l_{ij}\}$ in $\partial(B^3 + h_i)$. In $U1-B$, $\{l_{ij}, \ldots, l_{ij}\}$ go around on h_i (not on h_j), $\{l_{ij}, \ldots, l_{ij}\}$ go around on both the h_i and h_j, and $\{l_{ij}, \ldots, l_{ij}\}$ do not change the way of running. The dual transformation from $V1-A'$ into $V1-B'$ is obtained by a band move: each meridian l_{ij} is cut into two segments by the two longitudes m_i and m_j. Let the shorter segment be α. From $m_i \cup \alpha \cup m_j$, we may construct a band sum m_{ij} of m_i and m_j, and carry out a band move of m_{ij}. By an ambient isotopy and reorienting m_j, $V1-B'$ is obtained. In $V1-B'$, m_i does not change the way of running, and here m_j comes to cross $\{l_{ij}, \ldots, l_{ij}, l_{ij}, \ldots, l_{ij}\}$.

In the case of $(l = 0)$, if we can draw a band β which reaches to $m_j \times 0$ via $m_i \times 1$ as it does not intersect the longitudes, then we can handle sliding h_i about h_j along $\beta + \partial h_j$.

The above handle sliding is regarded as the band move of m_i: if we carry out the handles combining with h_i and h_j, then $U1-C$ is obtained. The handle h_i drawn heavily attaches under h_i. This means that handles combining gives a band move of m_i. Next by handle sliding of h_i about h_i along the direction of the line, $U1-B$ is obtained.

In like manners, a handle sliding of h_j about h_i and a band move of m_i are obtained. Hence we have:

Theorem 5. The transformation from $U1-A(V1-A'$ resp.) into $U1-B (V1-B'$ resp.) is carry out by a band move of m_i. It does not change the H-genus but changes the cross point number as many as $|l - p|$.

In $U1-A (V1-A'$ resp.) we can carry out band moves for two meridians and two longitudes in Theorem 5. And band moves to transform H-diagrams are only these types.

Applying the Theorem 4 to both the $(U ; m, l)$ and $(V ; l, m)$ in Theorem 5, we have:

Theorem 6. If $(U ; m, l) \cup (V ; l, m)$ and $(U ; m', l') \cup (V ; l', m')$ are two sets of the genus $n(\geq 2)$ H-diagrams associated with (U, V, F), then $(U ; m, l) ((V ; l, m)$ resp.) is transformed into $(U ; m', l') ((V ; l', m')$ resp.) under a finite sequence of band moves for two meridians and two longitudes.

There is an important result about the equivalent of H-splittings for the 3-sphere.

Theorem 7. H-splittings of the same genus of the 3-sphere are equivalent (Waldhausen [3]).
The above Theorem means that it is made as it chooses meridian-longitude systems \(\{ m_1, \ldots, m_n \}, \{ l_1, \ldots, l_n \} \) suitably in \(\text{H-splitting} \) of the 3-sphere, which satisfy the conditions of \(m_i \cap l_j = \{ \text{a point} \} \) (\(i = j \)) and \(m_i \cap l_i = \emptyset \) (\(i \neq j \)).

From the Theorems 6 and 7, we have:

Theorem 8. Any genus \(n(\geq 2) \) \(\text{H-diagram} \) of the 3-sphere is transformed into the canonical one under a finite sequence of band moves for two meridians and two longitudes.

It is not easy to transform \(\text{H-diagrams} \). In [5, 6], we obtain the methods of transformations of Heegaard cut diagrams (\(\text{H-cut-diagrams} \)) corresponding to those of \(\text{H-diagrams} \). They are the ones which have applied DS-deformations (Ikeda, Yamashita, Yokoyama; [10]) to \(\text{H-cut-diagram} \) for \(\text{DS-diagram} \) (Ikeda, Inoue; [7], Ishii [8]). We see that \(D_{\alpha} \)-deformation corresponds to the band move ([6]). In this way, \(\text{DS-diagram} \) and \(\text{H-cut-diagram} \) are closely related (Yamashita [9]).

4. **Transformations of the fundamental groups**

To state our result precisely, we prepare algebra calculations for groups.

Definition 9. Let \(\langle a_1, \ldots, a_n \mid r_1 = 1, \ldots, r_m = 1 \rangle \) denotes a presentation of a finitely generated group, where \(a_1, \ldots, a_n \) are generators and relator \(r_i \) is a word in the \(a_i \)'s (\(\varepsilon = \pm 1 \)). We underline to the letters which are operated.

Replacements letters: if there are relations \(a_i^*a_j^*w_k = 1 \) (\(k = 1, \ldots, \alpha \)), then replace the generator \(a_i \), letters \(a_i^*a_j^* \) by a new letter \(\tilde{a}_i \) (this becomes a new generator).

Substitution: if there are two relations \(w_1a_{i_1}^* \cdots a_{i_{\alpha}}^* = 1 \) and \(w_2a_{i_1}^* \cdots a_{i_{\alpha}}^* = 1 \), where \(a_k \) (\(k = 1, \ldots, \alpha \)) is a generator and \(a_{i_1}^* \cdots a_{i_{\alpha}}^* \) is a common word, then substitute \(a_{i_1}^* \cdots a_{i_{\alpha}}^* = w_{1,2}^{-1} \) for \(w_2a_{i_1}^* \cdots a_{i_{\alpha}}^* = 1 \).

Each above algebra calculation preserves isomorphism of a group.

Let \((U, V, F) \) be a genus \(n(\geq 1) \) \(\text{H-splitting} \) of \(M^3 \) and \((U; m, l) \) a \(\text{H-diagram} \) of \((U, V, F) \). \(\{ m \} = \{ m_1, \ldots, m_n \} \) and \(\{ l \} = \{ l_1, \ldots, l_n \} \) are meridian-longitude systems. Let each \(m_i, l_i \) be oriented. By applying the van Kampen’s Theorem to \(U \cup V \), we may obtain a well-known presentation of a fundamental group \(\pi_1(M^3) \):

\[
\pi_1(M^3) = \langle m_1, \ldots, m_n \mid \hat{l}_1 = 1, \ldots, \hat{l}_n = 1 \rangle \quad (1).
\]

We read that \(m_1, \ldots, m_n \) are regarded as the generators of the meridians \(m_1, \ldots, m_n \) and the relator \(\hat{l}_j \) is a word in the \(m_i^{\varepsilon_j} \)'s obtained by running once around the \(l_j \), i.e., while we take a
turn around \(l_i \) according to the orientation of \(l_i \), we read the label \(m_i \) continuously as \(m_i^{-1} \) (resp.) if \(l_i \) crosses \(m_i \) from the left side (the right side resp.) to the right side (the left side resp.) of \(m_i \). See Fig. 4. In the relator \(\tilde{l}_j \), we may start reading from any \(m_i \) in \(\tilde{l}_j \) because the word \(\tilde{l}_j \) becomes a cyclic word by joining both ends of \(\tilde{l}_j \) and preserving the sequential order of letters in \(\tilde{l}_j \). Hence \(\tilde{l}_j \) is uniquely defined up to cyclic permutations and inversions. A dual presentation from \((V ; l, m)\) of \((U, V, F)\) is also defined in an analogous manner, and is denoted as

\[
\pi_i(M^3) = \langle l_1, \ldots, l_n | \tilde{m}_1 = 1, \ldots, \tilde{m}_n = 1 \rangle \quad (1').
\]

Group (1) is isomorphic to (1') but the presentation (1) is generally different from (1') because meridians and longitudes are switched in \((U ; m, l)\) and \((V ; l, m)\). Hence the forms of relators in (1) and (1') are different generally.

Let a presentation of the fundamental group derived from U1–A, U1–B of \((U ; m, l)\) be (1A), (1B), respectively.

\[
\begin{align*}
\langle m_i, m_j \rangle & : \quad \begin{array}{l}
m_i m_j w_{i k} = 1 \cdots (l_{i k}) \quad (k = 1, \ldots, l) \\
m_k & \quad m_i^{-1} w_{i k} = 1 \cdots (l_{i k}) \quad (k = 1, \ldots, p) \\
(k \neq i, j) & \quad m_j w_{i k} = 1 \cdots (l_{i k}) \quad (k = 1, \ldots, q) \\
r_a & = 1 \quad \text{(relations other than the above)}
\end{array} \\
(1A)
\end{align*}
\]

\[
\begin{align*}
\langle m_i, m_j \rangle & : \quad \begin{array}{l}
m_i m_j w_{i k} = 1 \cdots (l_{i k}) \quad (k = 1, \ldots, l) \\
m_k & \quad m_i m_j^{-1} w_{i k} = 1 \cdots (l_{i k}) \quad (k = 1, \ldots, p) \\
(k \neq i, j) & \quad m_j w_{i k} = 1 \cdots (l_{i k}) \quad (k = 1, \ldots, q) \\
r_a & = 1 \quad \text{(relations other than the above)}
\end{array} \\
(1B)
\end{align*}
\]

Note that the relations \((l_{i k}) \quad (k = 1, \ldots, l)\) in (1A) and (1B), too, do not exist if the longitudes \(l_{i k} \quad (k = 1, \ldots, l)\) do not exist.

operations; in (1A), replace the generator \(m_i\), letters \(m_i \leftrightarrow m_j\) in \((l_{i k})\) by a new letter \(\tilde{m}_i\) (a new generator), we get a presentation that is isomorphic to (1B).

Let a presentation of the fundamental group derived from V1–A', V1–B' of \((V ; l, m)\) be (1A'), (1B'), respectively.

\[
\begin{align*}
\langle l_i, \ldots, l_p \rangle & : \quad \begin{array}{l}
l_i^{-1} \cdots l_p^{-1} l_{i p} \cdots l_{i i} = 1 \cdots (m_i) \\
l_i \cdots l_p l_{i p} \cdots l_{i i} = 1 \cdots (m_j) \\
(k \neq i, j, i j) & \quad r_a' = 1 \quad \text{(relations other than the above)}
\end{array} \\
(1A')
\end{align*}
\]
Operation : in (1A'), by substituting \(l_{ij} \cdots l_{ii} = l_{ii} \cdots l_{ij} \) derived from \((m_i)\) for \(l_{ii} \cdots l_{ij} \) in \((m_j)\), we get (1B').

In like manner, transformations of the fundamental groups corresponding to those of a handle sliding of \(h_i \) about \(h_j \) of \((U; m, l) \) and a band move of \(m_i \) of \((V; l, m) \) are obtained.

Hence by gathering the Theorem 6 and considering the above, we have;

Theorem 9. Let \((H; a, b)\) and \((H; a', b')\) are the genus \(n(\geq 2) \) \(H \)-diagrams associated with a \(H \)-splitting of \(M^3 \). Then transformations from \((H; a, b)\) into \((H; a', b')\) by a finite sequence of band moves are in 1-1 correspondence with those of the fundamental group derived from \((H; a, b)\) by the replacements and substitutions.

Moreover, from the Theorems 8 and 9 we have;

Theorem 10. Any \(H \)-diagram of genus \(n(\geq 2) \) of the 3-sphere and the fundamental group derived from that are reduced to the canonical one and the trivial group by a finite sequence of band moves and corresponding the replacements and substitutions.

We have a lot of examples for the 3-sphere \(S^3 \). Especially, they are ones about waves. The Whitehead [11]-Volodin-Kuznetsov-Fomenko [12] conjecture shows that “all \(H \)-diagrams of \(S^3 \) other than the canonical one have waves without fail.” This is an algorithm for recognizing \(S^3 \) in 3-manifold. In [1], Birman describes that “nobody has succeeded in verifying such an assertion between 1935 and 1977, or producing a counter example.” In 1980, Homma-Ochiai-Takahashi [14] success in the above conjecture if H-genus = 2. But Viro [13], Morikawa [15], Ochiai [17] and the author [6] construct counter examples if H-genus \(\geq 3 \). We can realize the ones of the persons above as examples of Theorem 10.

References

Shunzi Horiguchi
Niigata Sangyo University
Niigata
Japan